SUMMARY

Store-operated Ca2+ channels activated by the depletion of Ca2+ from the endoplasmic reticulum (ER) are a major Ca2+ entry pathway in nonexcitable cells and are essential for T cell activation and adaptive immunity. After store depletion, the ER Ca2+ sensor STIM1 and the CRAC channel protein Orai1 redistribute to ER-plasma membrane (PM) junctions, but the fundamental issue of how STIM1 activates the CRAC channel at these sites is unresolved. Here, we identify a minimal, highly conserved 107-aa CRAC activation domain (CAD) of STIM1 that binds directly to the N and C termini of Orai1 to open the CRAC channel. Purified CAD forms a tetramer that clusters CRAC channels, but analysis of STIM1 mutants reveals that channel clustering is not sufficient for channel activation. These studies establish a molecular mechanism for store-operated Ca2+ entry in which the direct binding of STIM1 to Orai1 drives the accumulation and the activation of CRAC channels at ER-PM junctions.

INTRODUCTION

Store-operated Ca2+ channels, or SOCs, comprise the major receptor-activated Ca2+ entry pathway in nonexcitable cells and play important roles in the control of gene expression, cell differentiation, secretion, and Ca2+ homeostasis (Parekh and Putney, 2005). In their native environment, SOCs are activated by the stimulation of phospholipase C (PLC)-coupled receptors that generate inositol 1,4,5-trisphosphate (IP\textsubscript{3}) and release Ca2+ from the endoplasmic reticulum (ER). The defining feature of SOCs is that they are activated by the reduction of [Ca2+]\textsubscript{ER} rather than by receptor-associated signaling molecules, such as G proteins, PLC, or IP\textsubscript{3}. The best-characterized store-operated channel is the Ca2+ release-activated Ca2+ (CRAC) channel, whose activation is a steep function of [Ca2+]\textsubscript{ER} (Luik et al., 2008; Prakriya and Lewis, 2004). CRAC channels play essential roles in T lymphocytes and mast cells, where they provide the pathway for Ca2+ entry triggered by antigen recognition or allergens, respectively, and are required for T cell activation and mast cell degranulation (Feske et al., 2001, 2005; Partiseti et al., 1994; Vig et al., 2008).

The molecular mechanism by which ER Ca2+ depletion activates the CRAC channel has been a mystery since the original proposal of the store-operated Ca2+ entry (SOCE) hypothesis over 20 years ago (Prakriya and Lewis, 2004; Putney, 1986). However, remarkable progress has been made in the past several years after the identification of STIM1 as the ER Ca2+ sensor (Liou et al., 2005; Roos et al., 2005; Zhang et al., 2005) and Orai1 as the pore-forming subunit of the CRAC channel (Prakriya et al., 2006; Vig et al., 2006; Yeromin et al., 2006). Recent studies show that the loss of ER Ca2+ triggers the oligomerization of STIM1 (Liou et al., 2007; Muik et al., 2008; Stathopoulos et al., 2006) and its accumulation in regions of the ER located within 10–25 nm of the plasma membrane (Wu et al., 2006), commonly referred to as “puncta.” Orai1 accumulates in overlying regions of the plasma membrane (PM) in register with STIM1 (Luik et al., 2006; Xu et al., 2006), culminating in the local entry of Ca2+ through CRAC channels (Luik et al., 2006). A recent study shows that STIM1 oligomerization is the key event that triggers the redistribution of STIM1 and Orai1, translating changes in [Ca2+]\textsubscript{ER} into graded activation of the CRAC channel (Luik et al., 2008).

While these studies demonstrate that STIM1 and Orai1 redistribute to ER-PM junctions after depletion of the internal stores, it is still not clear how this occurs. STIM1 forms puncta in response...
RESULTS

STIM1 Accumulates at ER-PM Junctions by Orai1-Dependent and -Independent Mechanisms

We initially investigated whether the formation of puncta by STIM1 and Orai1 after depletion of stores depends on coexpression of both proteins. When expressed by itself in HEK293 cells, mCherry-labeled STIM1 (mCh-STIM1) formed distinct puncta after depletion of Ca\(^{2+}\) stores with thapsigargin (TG; Figure 1A). In contrast, eGFP-myc-Orai1 expressed alone did not form puncta in response to TG (Figure 1B), but coexpression of mCh-STIM1 restored its ability to form puncta (Figure 1C). These results suggest that STIM1 recruitment to ER-PM junctions is independent of Orai1, whereas Orai1 recruitment to these sites depends on binding to STIM1 or a STIM1-associated protein, as has been previously suggested (Xu et al., 2006).

To identify the regions of STIM1 that are necessary for puncta formation, we investigated the role of the polybasic C-terminal domain (aa 672–685). Deletion of this region (STIM1-ΔK) has been reported to prevent puncta formation and SOC activation in some studies (Huang et al., 2006; Liou et al., 2007) but not in others (Li et al., 2007). We found that STIM1-ΔK failed to form puncta after store depletion when expressed alone in HEK293 cells (Figure 1D); however, when expressed together with Orai1, both proteins colocalized in puncta and activated \(I_{\text{CRAC}}\) after store depletion (Figures 1E and 1F). These data suggest that the polybasic domain is required to localize STIM1 to ER-PM junctions in the absence of Orai1 but that a second domain recruits and activates Orai1 at these sites.

Identifying a Minimal Cytosolic Region of STIM1 that Opens the CRAC Channel

To identify the CRAC-activating domain of STIM1, we first tested a series of soluble cytosolic STIM1 fragments for their ability to activate an NFAT-dependent luciferase reporter gene (NFAT-luc). A series of constructs were generated by progressive truncation of the full-length cytosolic region of STIM1 (Figure 2A; STIM1234–685; CT-STIM1) and were transiently expressed in a HEK293T cell line containing NFAT-luc. Because NFAT-dependent transcription requires the sustained elevation of intracellular Ca\(^{2+}\) (Ca\(^{2+}\)\(_{\text{in}}\)) combined with a phorbol ester to activate protein kinase C, treatment of cells bearing only NFAT-luc with PMA (phorbol 12-myristate 13-acetate; 1 \(\mu\)M) does not stimulate luciferase production. However, PMA in conjunction with 1 \(\mu\)M thapsigargin (TG), which activates Ca\(^{2+}\) entry through endogenous CRAC channels, activates NFAT-luc robustly (Figure 2B). Therefore, we compared luciferase production in the presence of PMA with that in PMA + TG to assess the ability of STIM1 fragments to activate endogenous CRAC channels.

While CT-STIM1 did not activate the NFAT reporter gene with PMA alone, truncations of either the C or N terminus of this protein generated several active STIM1 peptides (D3, D5, D6). By making additional truncations, we identified STIM1342–448 (D5) as the minimal peptide that was sufficient to activate NFAT-luc; we will refer to this domain hereafter as the CRAC activation domain (CAD). Western analysis showed that the inactivity of peptides D1, D2, D4, and D7–9 was due to inadequate expression (Figure S1A available online). The CAD encompasses a putative...
coiled-coil and part of the ERM domain of STIM1, is highly conserved among vertebrates and invertebrates from *C. elegans* to *H. sapiens*, and is virtually identical to a sequence in STIM2, another ER Ca\(^{2+}\) sensor that controls CRAC channel activation (Brandman et al., 2007) (Figure S2).

To determine whether CAD activates store-operated Ca\(^{2+}\) influx in cells, we measured [Ca\(^{2+}\)]\(_i\) in HEK293 cells expressing CAD and Orai1. CAD evoked a sustained [Ca\(^{2+}\)]\(_i\) elevation that was dependent on extracellular Ca\(^{2+}\) (Figure 2C), was suppressed by CRAC channel inhibitors like 2-APB and 10 \(\mu\)M La\(^{3+}\) (Figures S3A and S3B), and was not observed in cells coexpressing a dominant-negative nonconductive Orai1 mutant, Orai1\(_{E106A}\) (Prakriya et al., 2006) (Figure 2C). Importantly, CAD activated Ca\(^{2+}\) entry without depleting intracellular stores, because the Ca\(^{2+}\) released by TG in Ca\(^{2+}\)-free media was similar in CAD-expressing and untransfected cells (Figure 2C). These results suggest that CAD elevates [Ca\(^{2+}\)]\(_i\), by activating CRAC channels independently of store depletion.

As a definitive test for CRAC channel activation, we conducted whole-cell patch clamp recordings from HEK293 cells transiently transfected with myc-Orai1 and either YFP-STIM1 or YFP-CAD. In cells expressing full-length YFP-STIM1, I\(_{\text{CRAC}}\) appeared over several minutes after break-in, consistent with the typical slow activation seen in response to passive store depletion (Figure 2D). I\(_{\text{CRAC}}\) showed the characteristic inwardly rectifying current-voltage relation (Figure 2D, right), inhibition by La\(^{3+}\),
Please cite this article in press as: Park et al., STIM1 Clusters and Activates CRAC Channels via Direct Binding of a Cytosolic Domain to Orai1, Cell (2009), doi:10.1016/j.cell.2009.02.014
Flag-tagged Orai1 was immunoprecipitated with anti-Flag coexpressing CAD and Orai1 but not from cells expressing CAD myc-Orai1 was detected in the immunoprecipitates from cells and immunoprecipitated CAD with anti-Flag antibodies. eGFP-YFP-CAD in the absence of Orai1 (Figure 2F), consistent with observed at break-in in HEK293 cells transfected with YFP or YFP-CAD in the absence of Orai1 (Figure 2F), consistent with the low level of endogenous STIM1 and Orai1 in these cells. Interestingly, the current activated by CAD differed from native I_{CRAC} in that it lacked fast Ca^{2+}-dependent inactivation (Zweifach and Lewis, 1995). Inactivation was restored by addition of STIM1 residues carboxy-terminal to CAD (F.M.M., C.Y.P., R.E.D., and R.S.L., unpublished data).

Transfection of HEK293 cells with YFP-CT-STIM1 + myc-Orai1 failed to activate constitutive I_{CRAC} (Figure 2F) or elevate resting [Ca^{2+}]_i (data not shown), consistent with the lack of activity in the NFAT-luciferase assay. CT-STIM1 was inactive even though it was expressed at comparable levels to CAD or wild-type STIM1 (WT-STIM1; Figure S1B). While coexpression of CT-STIM1 + Orai1 did not elevate resting [Ca^{2+}]_i in HEK293 cells, it did so in HEK293T cells, which express large T antigen and express exogenous proteins at substantially higher levels than do HEK293 cells (data not shown). Our studies demonstrate that CAD is a much more potent activator of Orai1 than CT-STIM1, based on its ability to activate I_{CRAC} comparably to WT-STIM1 at expression levels at which CT-STIM1 activity is undetectable (Figure 2F).

CAD Associates with Orai1 In Vivo and In Vitro

Because cytosolic CAD is a potent activator of Orai1 channels and is not associated with the ER, we hypothesized that CAD might bind to Orai1. To test this idea, we first expressed YFP-CAD with or without myc-Orai1 in HEK293 cells and examined its intracellular localization. In the absence of Orai1, YFP-CAD was localized diffusely throughout the cytoplasm, but the introduction of Orai1 led to a dramatic recruitment of YFP-CAD to the plasma membrane, suggesting that the two proteins form a complex (Figure 3A). To provide additional evidence that CAD and Orai1 are part of the same protein complex, we expressed Flag-tagged CAD and eGFP-tagged Orai1 in HEK293T cells and immunoprecipitated CAD with anti-Flag antibodies. eGFP-myc-Orai1 was detected in the immunoprecipitates from cells coexpressing CAD and Orai1 but not from cells expressing CAD or Orai1 alone (Figure 3B). The reciprocal experiment, in which Flag-tagged Orai1 was immunoprecipitated with anti-Flag antibodies and YFP-CAD was detected by western blotting, confirmed that CAD immunoprecipitates with Orai1 only when the two proteins are coexpressed (Figure 3C). Thus, CAD and Orai1 form a protein complex in mammalian cells. Under the same conditions (150 mM salt, 1% Triton X-100), we were unable to detect any interaction between CT-STIM1 and Orai1 (Figure 3D), suggesting that the affinity of the full-length cytoplasmic domain of STIM1 for Orai1 is much weaker than that of the isolated CAD. This result may explain why CT-STIM1 is such a weak activator of CRAC channels and suggests that CAD is not exposed in CT-STIM1.

As a third test for association of CAD and Orai1 in vivo, and to map the interaction domains of Orai1, we introduced both proteins into a yeast split ubiquitin interaction system (Thaminy et al., 2004). In this assay, interaction of the two test proteins reunites the N- and C-terminal fragments of ubiquitin, releasing a LexA-VP16 transcriptional activator that enters the nucleus and activates reporter genes (Figure 3E). Fusion proteins of Orai1 and the N-terminal fragment of ubiquitin (NubG-Orai1) and of CAD and the C-terminal fragment of ubiquitin linked to LexA-VP16 (CAD-Cub-LV) were introduced into a yeast strain containing LexA His and β-galactosidase reporter genes. Yeast containing both the NubG-Orai1 and CAD-Cub-LV survived on His selection plates and produced significant levels of β-gal, whereas yeast expressing NubG-Orai1 and the Cub-LV domain alone did not (Figure 3F), indicating that CAD and Orai1 interact with each other in a heterologous system.

CAD Binds Directly to Orai1

To test for direct binding between the CAD and Orai1, we generated a GST-tagged CAD peptide in E. coli and an Orai1 protein containing C-terminal octa-histidine and N-terminal EYMPME (“EE”) tags in insect Hi5 cells. We incubated purified GST-CAD or GST alone with purified EE-Orai1-His8 and used glutathione beads to precipitate the complexes. GST-CAD coprecipitated Orai1, while GST alone did not, indicating that CAD binds directly to Orai1 in vitro (Figure 4A).

To examine the size of the protein complexes generated by the interaction of Orai1 and CAD, we prepared extracts from Hi5 cells expressing EE-Orai1-His8 alone or in combination with CAD-His8 and analyzed them by size-exclusion chromatography. Orai1 and CAD proteins were first affinity-purified with Ni^{2+}-NTA, and Orai1 and CAD proteins were then immunoprecipitated with anti-EE antibodies. Size-exclusion chromatography of Orai1 alone revealed a monodisperse peak with an apparent mass of ~290 kD (Figure 4B, left), consistent with Orai1 forming multimers in the absence of CAD.

Figure 2. Identification of CAD as a Potent CRAC Channel Activator

(A) Full-length STIM1 with its putative functional domains (top) and truncated versions of STIM1 (D1–D9; bottom) with the CAD shown in gray.

(B) NFAT-dependent luciferase activity in HEK293T (NFAT-Luc) cells transfected with wild-type (WT) or truncated (D1–D9) STIM1 constructs. Cells were treated with 1 μM PMA or 1 μM TG + PMA as shown. D5 (CAD) is the minimal region that is necessary and sufficient to activate NFAT. Data are shown as mean ± SEM (n = 4).

(C) CAD activates SOCE without depleting intracellular Ca^{2+} stores. [Ca^{2+}]_i measurements (mean ± SEM) in untransfected HEK293 cells (black; n = 28) and cells expressing CAD or Orai1 (red; n = 15), CAD + Orai1 (gray; n = 17), or CAD (342–440) + Orai1 (blue; n = 12) is shown.

(D) Left: I_{CRAC} develops slowly in a representative cell cotransfected with WT eGFP-STIM1 + myc-Orai1. Current recorded during brief pulses to −100 mV in 2 mM Ca^{2+} was plotted against time after break-in. Right: Characteristic I-V relationship for I_{CRAC} recorded in 20 mM Ca^{2+} from the same cell.

(E) Left: I_{CRAC} is constitutively active in a representative cell cotransfected with YFP-CAD + myc-Orai1. Current is plotted as in (D). Right: I-V relationship for the CAD-induced current recorded in 20 mM Ca^{2+} from the same cell.

(F) Current densities in cells transfected with CAD or Orai1 alone or cotransfected with myc-Orai1 and eGFP-STIM1, YFP-CAD, or YFP-CT-STIM1. Current measured at −100 mV during voltage ramps in 20 mM Ca^{2+} was normalized to the cell capacitance. Mean values ± SEM from four to five cells are shown.
Analysis of the eluate fractions by SDS-PAGE revealed a doublet of ~37 kDa (Figure 4B, right), representing glycosylated and unglycosylated forms of EE-Orai1-His8 as determined by the ability of tunicamycin to collapse the top band to the lower band (data not shown). In contrast to Orai1 alone, EE-Orai1-His8 purified from cells coexpressing CAD-His6 eluted largely in the void volume.
consistent with the formation of a large protein complex of molecular weight >10 MDa (Figure 4C). The complex was stable in 0.5 M NaCl, suggesting a high-affinity hydrophobic interaction of multiple CAD and Orai1 proteins. Importantly, complex formation did not involve significant amounts of additional proteins, indicating that the interaction between CAD and Orai1 is direct (Figure 4C). The excess free CAD-His6, isolated by gel filtration after Ni2+-NTA purification of the complex, was analyzed by multangle light scattering (MALS), which indicated a molecular weight of 58 kDa, or 4.4 times the predicted weight of 13.2 kDa for the CAD-His6 monomer (Figure 4D). Together, these results show that Orai1 exists as a multimer in the absence of CAD and that CAD forms a tetramer in free solution that links together multiple Orai1 multimers.

STIM1-CAD Binds to the N and C Termini of Orai1

To identify regions of Orai1 important for activation by CAD, we characterized the binding of CAD to Orai1 using two approaches. First, we expressed fusions of NubG with the N terminus, the II-III cytoplasmic loop, and the C terminus of Orai1 in yeast together with CAD-Cub-LV. Survival of colonies in selection media and production of β-gal revealed that CAD binds to the N and C terminus of Orai1 but not to the II-III loop or to the C ubiquitin fragment alone (Figure 5A). Based on the level of β-gal activity, CAD appears to interact with the Orai1 C terminus with a higher affinity than with the N terminus. We next expressed fusions of YFP with the N terminus, the II-III loop, and the C terminus of Orai1 in HEK293T cells together with Flag-myc-CAD. Immunoprecipitation of Flag-myc-CAD followed by western blotting revealed that CAD interacts with the N and C terminus of Orai1 but not with the II-III loop (Figure 5B).

To explore the interaction between the N terminus of Orai1 and CAD in more detail, we mapped the subregion within the N terminus of Orai1 that is responsible for CAD binding, using both the split ubiquitin and HEK293T coimmunoprecipitation assays. In the yeast assay, CAD interacted strongly with Orai148–91 and Orai168–91 but not with Orai148–70. Similarly, in the HEK cell assay, CAD coimmunoprecipitated with Orai148–91 but not with Orai11–70, suggesting that CAD binds to the region of aa 70–91 (Figure 5D). The interaction between CAD and Orai148–91 was significantly stronger than that between CAD and the full-length N terminus of Orai1 (Figure 5D, right).
suggesting that aa 1–48 reduce the affinity between CAD and the isolated Orai1 N terminus.

We next tested the function of the CAD-binding regions of Orai1 using whole-cell recording. We introduced CAD into HEK293 cells together with Orai1 lacking the full N (Orai1-DN) or C terminus (Orai1-DC) or the initial 73 residues of the N terminus (Orai1-DN73) preceding the CAD binding site (Li et al., 2007). Western blotting and immunostaining of Orai1 containing an extracellular HA epitope confirmed that these mutations do not alter the expression or cell surface localization of the channels (Figure S4). CAD constitutively activated I_{CRAC} in cells expressing Orai1-DN73 but not in cells expressing Orai1-DN or Orai1-DC (Figures 5E and 5F), showing that the N and C termini of Orai1 are both necessary for activation by CAD but that aa 1–73 are not absolutely required (see also Li et al., 2007). Furthermore, deletion of aa 73–84 from Orai1 suppressed CAD-induced Ca^{2+} influx (Figure S5). Taken together with the results of Figures 5A–5D, these findings suggest that CAD binding to the C terminus of Orai1 and the membrane-proximal region of the Orai1 N terminus is required to activate the CRAC channel.

CAD Clusters CRAC Channels

The large size of the CAD/Orai1 complex indicates that CAD clusters Orai1. To investigate the nature of these complexes and test for nonspecific aggregation, we examined purified material from the gel filtration column by negative-stain single-particle electron microscopy (Figures 6A and 6B). Analysis of purified Orai1 alone revealed primarily particles of 8–10 nm in diameter.
diameter, presumably representing single CRAC channels, with a low frequency of pairs and triplets. In contrast, in the presence of CAD, we observed clusters of Orai1 unitary particles that increased in frequency and size with increasing molecular weight of the column eluates. Taken together with the MALD results, these images suggest that tetramers of CAD bind to multiple sites on CRAC channels to create these clusters.

To test whether CAD also clusters CRAC channels in intact cells, we conducted fluorescence recovery after photobleaching (FRAP) experiments of eGFP-Orai1 expressed alone or with CAD in HEK293 cells. Our FRAP measurements of eGFP-Orai1 alone suggest that 83% ± 2% of the channels are mobile in the membrane with an effective diffusion coefficient (D) of 0.070 ± 0.011 μm²/s (n = 9, Figures 6C–6E). In cells coexpressing eGFP-Orai1 and CAD, the mobile fraction was unchanged (87% ± 4%), but Orai1 diffusion was slowed by a factor of two (D = 0.036 ± 0.006 μm²/s, n = 6). Thus, CAD does not appear to anchor CRAC channels to an immobile substrate, but does slow their diffusion significantly, consistent with CAD-induced clustering of Orai1 in the cell membrane.

The Role of CAD in Orai1 Binding and Activation by STIM1
A key question is whether CAD is responsible for the clustering and activation of CRAC channels by full-length STIM1 after store depletion. To address this, we measured the ability of mCherry-tagged STIM1 variants containing CAD mutations to cocluster with eGFP-Orai1 and activate Ca²⁺ entry in response to TG (Figure 7). STIM1-Orai1 colocalization was quantified as the fraction of total STIM1 and Orai1 fluorescence that was recruited to regions of high fluorescence covariance (Figure S6), while Ca²⁺ influx was measured with single-cell Ca²⁺ imaging. For each set of experiments, we measured mCherry and GFP fluorescence to confirm that differences in the activity of the various STIM1 constructs were not due to differences in expression level (Figure S7).

We first deleted the CAD from WT-STIM1 (STIM1-D/CAD) and found that when expressed with eGFP-Orai1, mCh-STIM1-D/CAD failed to form puncta, cluster Orai1, or activate Ca²⁺ entry in response to TG (Figures 7A, 7E, and 7F). Moreover, in the NFAT-luciferase assay, STIM1-D/CAD inhibited NFAT activation by endogenous channels after treatment with TG + PMA (Figure 2B), suggesting that it forms nonfunctional oligomers with endogenous STIM1. These results show that the CAD is required for STIM1 to form puncta and to recruit and activate Orai1 at ER-PM junctions.

To test whether the CAD in STIM1 can function independently of the residues C-terminal to it, we truncated STIM1 from the C terminus to the end of the CAD (STIM1-448). When coexpressed with Orai1, STIM1-448 behaved much like WT-STIM1; it was distributed throughout the ER of resting cells, and after store depletion it formed puncta with Orai1 and activated Ca²⁺ entry (Figures 7B and 7E), though both puncta and Ca²⁺ entry were somewhat less pronounced than with WT-STIM1 (Figure 7F). Therefore, the region of STIM1 carboxy terminal to CAD is not absolutely required for CRAC channel binding or activation, although it may make a minor contribution to both.

Deletion of the last 8 aa from the CAD (342–440) peptide eliminates its ability to activate CRAC channels (Figure 2B, C). We therefore tested whether this mutation also prevents STIM1-448 from activating Orai1 by deleting the final 8 aa to generate STIM1-342, STIM1-440 failed to activate SOCE after store depletion (Figures 7E and 7F), supporting the idea that CAD function is required for CRAC channel activation by STIM1. Surprisingly, however, STIM1-440 retained the ability to form puncta and cluster Orai1, though to a lesser extent than WT-STIM1 (Figures 7C and 7F). Consistent with this result, communoprecipitation experiments revealed that the CAD 342–440 retained the ability to bind to Orai1 (Figure S8) even though it cannot activate it. We obtained a similar result with a STIM1 C437G mutant, which formed pronounced puncta with Orai1 but only marginally activated SOCE (Figures 7D–7F). Together, these data indicate that clustering of CRAC channels by itself is not sufficient to cause channel opening.

DISCUSSION
The STIM1 Polybasic Domain Directs Orai1-Independent Formation of STIM1 Puncta
Our results with STIM1-ΔK reveal a new role for the highly conserved lysine-rich domain in STIM1 trafficking and resolve the current debate about its necessity for CRAC channel activation. We found that while STIM1 can form puncta when expressed alone, STIM1-ΔK requires coexpression of Orai1, showing that the polybasic domain enables STIM1 binding to an Orai1-independent target at ER-PM junctions. These results explain discrepancies in prior studies, where STIM1-ΔK failed to redistribute when expressed alone in HEK293 or HeLa cells (Huang et al., 2006; Liou et al., 2007) but did form puncta and activate I_{CRAC} when coexpressed with Orai1 in HEK293 cells (Li et al., 2007). The latter finding is now explained by the direct binding of the CAD domain in STIM1-ΔK to Orai1.

The existence of multiple mechanisms for targeting STIM1 to ER-PM junctions is expected to enhance productive interactions between STIM1 and Orai1 after Ca²⁺ store depletion. Because endogenous levels of STIM1 and Orai1 are generally modest and their interaction is restricted to ER-PM junctions, which cover only ~5% of the cell surface (Wu et al., 2006), the probability that freely diffusing STIM1 and Orai1 proteins will encounter and bind to each other is likely to be low under physiological conditions. However, the initial recruitment of STIM1 to the ER-PM junctions via the polybasic domain produces a high local concentration of CAD sites beneath the plasma membrane, increasing the likelihood that a diffusing CRAC channel will bind to STIM1 and thereby enhancing the speed and extent of CRAC channel activation.

CAD Is the Domain of STIM1 that Activates the CRAC Channel
In previous studies, the STIM1 cytosolic region was truncated or mutated to probe the functions of putative domains that had been identified through bioinformatic analysis. Significantly, all of the truncations that completely inhibit CRAC channel activation and prevent the formation of puncta eliminate all or part of CAD (aa 342–448). These include the “delta-ERM” (deleted...
Figure 6. CAD Links Multiple CRAC Channels to Form Clusters

(A) Negative-stain electron microscopy of purified EE-Orai1-His8 (left panel; fraction 8 from Figure 4B) or complexes of EE-Orai1-His8 and CAD-His6 (right panels; fractions 4 and 8 from Figure 4C). Scale bars represent 100 nm (top) and 20 nm (bottom, enlargements from dashed boxes).

(B) Frequency distribution of particle clusters, normalized to 1.0. Black line: Orai1 (fraction 8); red line: Orai1 + CAD (fraction 8); blue line: Orai1 + CAD (fraction 4).

(C) eGFP-Orai1 before and after bleaching and recovery. Scale bar represents 100 nm.

(D) Normalized fluorescence over time. Black line: Orai1; black line with dots: Orai1 + CAD.

(E) D (μm²/s) and mobile fraction (%) for Orai1 and Orai1 + CAD.
aa 251–535) (Huang et al., 2006), “delta-ST” (aa 1–390) (Baba et al., 2006), and “delta-C2” (aa 1–424) (Li et al., 2007) variants. The inhibitory effects of these deletions can now all be ascribed to a loss of CAD function rather than suggesting roles for the ERM, serine-proline-rich, and polybasic domains in SOC activation. The CAD’s central role is further underscored by the potent ability of CAD peptide and STIM11–448 to activate SOCE and by the loss of STIM1 activity after depletion of CAD or the introduction of mutations that inhibit CAD function (Figure 7).

Heterologous expression of the full-length cytosolic STIM1 domain, CT-STIM1, has been reported to activate CRAC channels (Huang et al., 2006; Muik et al., 2008; Zhang et al., 2008). In our studies, CT-STIM1 failed to bind to Orai1 or evoke detectable CRAC channel activity when expressed at moderate levels at which CAD bound to Orai1 and strongly activated CRAC channels. We only observed an effect of CT-STIM1 when it was overexpressed in HEK293T cells along with Orai1, suggesting that it binds to Orai1 with very low affinity. The much-reduced activity of CT-STIM1 relative to CAD suggests that the CAD may be hidden within CT-STIM1 and that a conformational change (perhaps caused by STIM1 oligomerization) is needed to expose the CAD after store depletion.

CAD Binds Directly to Orai1 to Activate the CRAC Channel

Since the discovery of STIM1 and Orai1 and the demonstration that they cocluster at ER-PM junctions in response to store depletion, there has been considerable interest and uncertainty about how STIM1 activates the CRAC channel across the narrow 10–25 nm ER-PM gap. Several possible mechanisms have been proposed, including local release of a diffusible messenger (Boilotina, 2008) or a physical interaction with Orai1 mediated either directly or through unidentified auxiliary proteins (Muik et al., 2008; Varnai et al., 2007; Yeromin et al., 2006). Our GST-pulldown and coelution results with purified proteins provide the definitive evidence that CAD binds directly to Orai1 without the necessity for auxiliary partners. Furthermore, the ability of CAD to activate CRAC channels throughout the cell independently of ER Ca2+ depletion argues strongly against the necessity for a diffusible messenger like C1R to be released by depletion-induced changes in the STIM1 luminal domain (Boilotina, 2008). Our results provide strong evidence for a conformational coupling mechanism in which binding of the STIM1 CAD to Orai1 induces conformational changes that lead directly to opening of the CRAC channel.

CAD Interacts with Multiple Regions of Orai1

The N- and C-terminal domains of Orai1 have previously been implicated in CRAC channel clustering and activation. Deletion of the Orai1 C terminus or an L273S mutation in the C terminus prevents STIM1 from clustering Orai1 and activating ICRAC, whereas deletion of the N terminus does not affect clustering but precludes channel activation (Li et al., 2007; Muik et al., 2008; but see Takahashi et al., 2007). In addition, CT-STIM1 was shown to bind weakly to the isolated Orai1 C terminus but not the N terminus in vitro (Muik et al., 2008). These studies concluded that STIM1 interacts physically only with the Orai1 C terminus, with the N terminus being required for channel gating. Our results from using yeast split ubiquitin and mammalian cell coinmunoprecipitation assays confirm the strong binding of CAD to the Orai1 C terminus but also demonstrate an interaction with the membrane proximal part of the N terminus (aa 70–91), a region that is required for ICRAC activation (Li et al., 2007) (Figure 5F, Figure S5). Because CAD binds to two regions of Orai1 that are essential for channel activation, we hypothesize that CAD may provide the energy for CRAC channel gating by bridging the N and C termini of the channel.

CAD-Induced Clustering of CRAC Channels Is Independent of Activation

Purified CAD forms a tetramer in solution (Figure 4D) and can cluster Orai1/CRAC channel particles into extended arrays both in vivo and in vitro (Figure 6). This implies that each CAD tetramer has at least two binding sites for Orai1 and each CRAC channel at least two binding sites for CAD. A key question is, does CRAC channel clustering itself deliver a signal for channel activation? Recent data suggest that Drosophila STIM dimerizes resting dimers of Orai in the plasma membrane to create functional homotetrameric CRAC channels (Penna et al., 2008). Our negative-stain electron microscopy data show that human CAD induces the clustering of Orai1 particles that are similar in size to pure Orai1 particles, which is inconsistent with the merging of two Orai1 dimers to form a tetramer (Figure 6A). While these differences may be species specific, our data support the idea that the human CRAC channel has a constant subunit stoichiometry (Ji et al., 2008) and that CAD links multiple channels together. Furthermore, the ability of the STIM1 truncation mutant (1–440) (and to a lesser extent the C437G mutant) to cluster Orai1 at ER-PM junctions without activating the channel (Figure 7F) shows that clustering and activation are separable processes. Thus, CRAC channel clustering itself is not sufficient to induce opening, implying that CAD operates through an allosteric mechanism to gate the CRAC channel.

A Molecular Mechanism for CRAC Channel Activation

The results of this study together with previous data suggest the following model for the activation of Orai1 by STIM1. Depletion of ER Ca2+ stores causes a conformational change in the luminal EF-hand/SAM domain of STIM1 that leads to its oligomerization.
Figure 7. CRAC Channel Clustering and Activation by STIM1 Are Separable and Require the CAD Region

(A–D) When coexpressed with Orai1, STIM1–ΔCAD fails to form puncta and cluster Orai1 after store depletion (A). In contrast, STIM11–448 (B), STIM11–440 (C), and STIM1 C437G (D) coaccumulate with Orai1 in puncta after store depletion. Images are confocal micrographs of the HEK293 cell footprint. Scale bars represent 10 μm.

(E) Ca²⁺ measurements (mean ± SEM) in HEK293 cells expressing the indicated constructs. In all cases, Orai1 was tagged with eGFP and the STIM1 or its variant was tagged with mCherry.

(F) Puncta formation and Ca²⁺ influx in cells expressing Orai1 and STIM1 variants. Each set of bars shows the fraction of the cell’s STIM1 or Orai1 fluorescence that is colocalized to puncta before and after store depletion (mean ± SEM, n = 4 cells for each) and the initial rate of Ca²⁺ entry (dR/dt, where R is the fura-2 350/380 fluorescence ratio) measured 10–20 s after readdition of Ca²⁺ in (E).
Oligomerization has two functional effects: first, it enables the polybasic region to target STIM1 to ER-PM junctions, and second, it causes a conformational change in STIM1 to expose the CAD. The locally high concentration of exposed STIM1 CAD at the junctions promotes binding to Orai1, creating a high avidity trap to accumulate diffusing CRAC channels and leading to the formation of tightly colocalized STIM1-Orai1 clusters. Finally, the binding of CAD alters the conformation of Orai1 to drive the opening of CRAC channels and evoke Ca\(^{2+}\) entry. More direct evidence for key steps, e.g., the structural basis of gene). Cotransfection with the reporter gene (firefly luciferase gene C-terminal to a 4X-NFAT site from the IL-2 NFAT-Luciferase Assays

EXPERIMENTAL PROCEDURES

Cells and Transfection

HEK293 and HEK293T cells (ATCC) were cultured in Dulbecco’s modified Eagle’s medium (DMEM) with GlutaMax (GIBCO, Carlsbad, CA), 10% fetal bovine serum (FBS; Hyclone, Logan, UT), and 1% penicillin/streptomycin. HEK293 and HEK293T cells (ATCC) were cultured in Dulbecco’s modified Eagle’s medium (DMEM) with GlutaMax (GIBCO, Carlsbad, CA), 10% fetal bovine serum (FBS; Hyclone, Logan, UT), and 1% penicillin/streptomycin. A HEK293 cell line with an inducible eGFP-myc-Orai1 was maintained with 50 \(\mu\)g/ml hygromycin and 15 \(\mu\)g/ml blasticidin. Cells were transfected at 90% confluency with 0.2–0.5 \(\mu\)g DNA using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions.

NFAT-Luciferase Assays

HEK293T cells were cotransfected with the indicated constructs and an NFAT reporter gene (firefly luciferase gene C-terminal to a 4X-NFAT site from the IL-2 gene). Cotransfection with the Renilla luciferase gene (pRLTK) driven by the TK promoter was used to control for cell number and transfection efficiency. After 12–18 hr, cells were treated with a control dimethyl sulfoxide (DMSO) solution (mock), phorbol 12-myristate 13-acetate (PMA; 1 \(\mu\)M), or PMA + TG (1 \(\mu\)M) for 8 hr. Assays were performed with the Dual Luciferase Reporter Assay System (Promega). For each condition, luciferase activity was measured with four samples taken from duplicate wells with a 96-well automated luminometer (Turner Biosystems). Results are represented as the ratio of firefly to Renilla luciferase activity.

Immunoprecipitation and Immunoblot Analysis

Transfected HEK293T cells (12–24 hr) were washed with phosphate-buffered saline (PBS) and lysed in 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1% Triton X-100, and protease inhibitors. Lysates were spun at 12,000 rpm for 10 min, and the supernatant was incubated with anti-Flag M2 agarose beads (Sigma), or anti-myc antibody followed by IgG agarose beads (Pierce). Lysates and immunoprecipitates were subjected to SDS-PAGE, probed with horseradish peroxidase (HRP)-conjugated secondary antibody, and detected by enhanced chemiluminescence (Pierce).

Split-Ubiquitin Yeast Two-Hybrid Assay

Screening was performed according to the manufacturer’s instructions (Dual-systems Biotech). Transformed yeast were selected on media lacking Trp and Leu (-TLL). Interaction was observed by cell growth on plates lacking Trp, Leu, and His (-TLLH) in the presence of 3-aminotriazole (3-AT). Protein interactions were also assessed by measuring lacZ activity with the chromogenic substrate X-gal (5-bromo-4-chloro-3-indoly-l-beta-galactopyranoside).

GST Pulldown Assays

For GST pulldown assays, either GST-CAD (0.16 \(\mu\)M) or GST (0.15 \(\mu\)M) was incubated with EE-Orai1-His\(_x\) (0.1 \(\mu\)M) for 1 hr in buffer containing: 20 mM Tris-HCl (pH 8.0), 150 mM NaCl, 20 mM imidazole, and 1 mM diithiothreitol (DTT) with protease inhibitors. After addition of glutathione sepharose, the beads were centrifuged and washed with the above buffer, and the precipitated proteins were eluted with boiling SDS and analyzed by SDS-PAGE and western blotting.

Purification of EE-Orai1-His\(_x\)

EE-Orai1-His\(_x\) and His\(_x\)-CAD were integrated into baculoviruses and expressed alone (Orai1) or together (Orai1 + CAD) in Hi5 cells (Invitrogen) for 48 hr at 28°C. After cell lysis, membranes were solubilized by resuspension in 1% DDM (n-dodecyl-\(-\)D-maltoside; Anachro, IL, USA). Protein was purified with Ni\(^{2+}\)-NTA beads, and the eluted protein was then incubated with \(\gamma\)-bind Protein G Sepharose beads and anti-EE antibody (Covance, CA, USA) overnight at 4°C and eluted with 1 mg/ml EE peptide (Anaspec, CA, USA). DDM was maintained at 0.1%, and the NaCl concentration was 0.5 M up to this purification step. The protein was then passed over a Superose 6 size exclusion column equilibrated in 20 mM Tris (pH 8), 150 mM NaCl, 10% glycerol, 0.02% DDM, and 0.004% CHS (choleryl hemisuccinate, Tris salt) to remove aggregated material and EE peptide. Orai1 was more than 98% pure as judged by SDS-PAGE analysis.

MALs Analysis of His\(_x\)-CAD

His\(_x\)-CAD was isolated from cells expressing His\(_x\)-CAD and EE-Orai1-His\(_x\) and analyzed by MALs with a DAWN EOS light-scattering system (Wyatt Technology, Santa Barbara, CA). The detector responses were normalized against monomeric bovine serum albumin.

Electron Microscopy

EE-Orai1-His\(_x\) alone or copurified with His\(_x\)-CAD was injected into a final concentration of \(<0.01 mg/ml in 20 mM Tris, 150 mM NaCl, and 0.02% DDM buffer and was negatively stained with uranyl formate as described (Ohi et al., 2004). Images were recorded with a Phillips CM-10 electron microscope equipped with a tungsten filament operated at 100 kV. Images were taken at a nominal magnification of 39,000× and a defocus of \(-\)1.5 μm on a Gatan 1k x 1k CCD camera.

Confocal Microscopy

Six hours after transfection, HEK293 cells were plated onto coverslips coated with poly-D-lysine and maintained in complete DMEM for an additional 12–18 hr before imaging in Ringer’s solution containing: 155 mM NaCl, 4.5 mM KCl, 2 mM Ca\(_{\text{2+}}\), 1 mM MgCl\(_2\), 10 mM D-glucose, and 5 mM Na-HEPES (pH 7.4). For depletion of stores, cells were treated with 1 μM TG in Ca\(_{\text{2+}}\)-free Ringer’s (prepared by substitution of 2 mM MgCl\(_2\) and 1 mM ethylene glycol tetraacetic acid [EGTA] for CaCl\(_2\)) for 10 min. eGFP and mCherry were excited simultaneously at 488 and 594 nm, respectively, on a Leica SP2 AOBS inverted confocal microscope equipped with a PL APO 100× NA 1.4 oil immersion objective. Fluorescence emission was collected at 615–840 nm (mCherry) and 510–570 nm (eGFP). All experiments were performed at 22°C–25°C.

Fluorescence Recovery after Photobleaching

Inducible HEK293 cells were transiently transfected with mCh-CAD and maintained with 10 μM LaCl\(_3\) to suppress tonic Ca\(_{\text{2+}}\) entry. After 15–16 hr, eGFP-myc-Orai1 expression was induced with 1 μM LaCl\(_3\) and 1 mM ethylene glycol tetraacetic acid [EGTA] for CaCl\(_2\)) for 10 min. eGFP and mCherry were excited simultaneously at 488 and 594 nm, respectively, on a Leica SP2 AOBS inverted confocal microscope equipped with a PL APO 100×/NA 1.4 oil immersion objective. Fluorescence emission was collected at 615–840 nm (mCherry) and 510–570 nm (eGFP). All experiments were performed at 22°C–25°C.

Ca\(_{\text{2+}}\) Imaging

For Figure 2, cells were loaded at 33°C in DMEM with 1 μM fura-2/AM for 30 min. Ratiometric Ca\(_{\text{2+}}\) imaging was performed at 340 and 380 nm in 2 mM Ca\(_{\text{2+}}\) Ringer’s solution with a Nikon Eclipse 2000-U inverted microscope equipped with a fluorescent arc lamp, excitation filter wheel, and a Hamamatsu Orca CCD camera. Images were collected with Openlab (Improvision) and analyzed with Igor Pro.

For Figure 7, cells were loaded as above with 2 μM fura-2/AM for 25 min. Ratiometric Ca\(_{\text{2+}}\) imaging was performed with 350 and 380 nm excitation in 2 mM Ca\(_{\text{2+}}\) Ringer’s solution on an Axiovert 35 inverted microscope with a Video-Probe imaging system as described (Baust et al., 2002). mCherry-positive cells were identified with a 540 ± 12 nm excitation and a 580 LP emission filter (Chroma).
Electrophysiology

HEK293 cells were transfected 8–24 hr prior to electrophysiology experiments with STIM1 and Orai1-derived constructs in a 1:1 mass ratio with Lipofectamine 2000. Cells transfected with CAD + Orai1 were cultured in 10 μM LaCl3 to avoid the toxicity of constitutively active I_{CRAC}, and LaCl3 was washed out immediately before seal formation. I_{CRAC} in cells cultured without LaCl3 was similar to that in cells cultured with LaCl3, but most cells without LaCl3 died soon after break-in.

Currents were recorded via standard whole-cell patch clamp techniques (Praakriya and Lewis, 2001). Pipettes of resistance 2–5 MΩ were filled with an internal solution containing 150 mM Cs aspartate, 8 mM MgCl2, 10 mM EGTA, and 10 mM HEPES (pH 7.2 with CsOH). Currents were sampled at 5 kHz and filtered at 2 kHz, and all voltages were corrected for the junction potential of the pipette solution relative to Ringer’s in the bath (−13 mV).

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures and eight figures and can be found with this article online at http://www.cell.com/supplemental/S0092-8674(09)00152-4.

ACKNOWLEDGMENTS

The authors thank M. Wu for early Ca2+ imaging experiments on CT-STIM1, D. Oh for helpful comments, and M. Cahalan, S. Feske, T. Meyer, S. Muallem, C. Romanin, and T. Xu for cDNA constructs. This work was supported by grants from the National Institutes of Health (NIH; R.E.D. and R.S.L.) and the SPARK program (C.Y.P.). T.W. and K.C.G. grants from the National Institutes of Health (NIH; R.E.D. and R.S.L.) and the SPARK program (C.Y.P.). T.W. and K.C.G. are Investigators of the Howard Hughes Medical Institute.

Received: September 24, 2008
Revised: January 6, 2009
Accepted: February 9, 2009
Published online: February 26, 2009

REFERENCES

